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ABSTRACT

The development of parameter estimation
techniques is often based upon testing using
simulated measurements corrupted with noise.
For deterministic systems, producing sample
noisy signals is relatively easy. For stochastic
systems, particularly if several parameters are
stochastic, the cost of the usual Monte Carlo
calculations can be prohibitive. The paper dis-
cusses the use of polynomial chaos and Wick
products for efficiently generating sample sig-
nals.

INTRODUCTION

Parameter estimation techniques can be char-
acterized by their approaches: A) parameters
that are constant or deterministic in form. For
example, assuming that the modulus of elas-
ticity, E, is given by E(T ) = a0 + a1f1(T ) +
a2f2(T ) where T is temperature and f1(T ) and
f2(T ) are prescribed functions of temperature.
B) the parameters sought are functions of time,
for example the time variation of the surface
heat flux. C) cases where the parameters rep-
resent physical properties that are stochastic
in nature, e.g., the permeability of a media, or
stochastic boundary conditions. Good descrip-
tions of methods appropriate to A) and B) are
given by Beck [1, 2] and Vogel [3]. Many exam-
ples of these methods can be found in several
recent conferences [4-5]. For C) a common ap-
proach for estimating the parameters is that of
Kalman filtering with stochastic ”plant noise”
[6,7,8]

The efficiency and accuracy of the meth-
ods are usually demonstrated by applying them
to measured responses of systems with known
values of the parameters. These measured re-
sponses are typically taken as the simulated re-
sponses corrupted by noise. The noise is almost

always of zero mean and with constant stan-
dard deviation, that is homogeneous or wide
sense stationary noise. Relatively few exam-
ples exist of the application of these methods
to experimental measurements, particularly in
the field of heat transfer. Part of the reason
is that in many heat transfer experiments the
boundary conditions are hard to specify with
exactness. For example, maintaining a pre-
scribed temperature at the boundary is diffi-
cult to do, surface convection coefficients are
generally variable in space and time, partic-
ularly for turbulent flows, and most thermal
properties are functions of temperature, e.g.,
conductivity and specific heat capacity, or of
surface conditions, e.g., surface emissivity or
nucleate boiling conditions. Thus many exper-
imentalists are content to make estimates by
curve or least squares fitting and to state re-
sults in the form ±x%. A major need is to
convince the community that inverse parame-
ter estimation methods should be applied by
demonstrating that they are accurate and rea-
sonable to apply.

For the deterministic system, while the com-
putation of the response may be difficult and
expensive, once obtained, the corruption of the
signal by noise can be easily done and the be-
havior of the estimation method easily checked.
For example, consider the transient behavior of
an object cooling by convection to ambient air.
For a high conductivity the lumped capacity
response is given by

ρcV
dT

dt
= hA(T∞ − T ) (1)

where ρcV represents the capacitance, T∞ is
the ambient temperature, and hA is the prod-
uct of surface heat transfer coefficient and the
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surface area. For a constant ambient tempera-
ture, the equation can be non- dimensionalized
to the form

dΘ
dt

= −CΘ 0 ≤ t ≤ T (2)

where Θ = (T − T∞)/(T (0) − T∞) and C =
hA/ρcV . The solution, Θ(t) = exp(−Ct), with
C = 1 will be taken as our base case in the
discussion of the development of simulated re-
sponses.

The value of C can be obtained by the usual
parameter estimation techniques based upon
a one term Taylor series approach using the
equations

Θ(t) − Θ(C0) =
∂Θ(t)
∂C

|C0(C − C0)

≡ A(t)(C − C0) (3a)
σ−2(C) =AT Σ−1A (3b)

C = C0 + σ2Σ−1AT (Θ(t) − Θ(C0)) (3c)

where Σ is the covariance matrix of the noise
and C0 is an initial guess for C and the process
is iterated to convergence. In many papers dis-
cussing the development of methods, the test-
ing has been done using only a few sample
realizations. This is unfortunate because the
demonstration of the robustness of the method
should be based upon a large number of tests.
Figure 1a shows typical realizations for a zero
mean noise with σ = 0.05 and Figure 1b illus-
trates the resulting estimates of C. Although
the standard deviation of the estimated values
of C, σ(C) = 0.0359 agrees well with that pre-
dicted from Eq. 3b, 0.0387, the figure clearly
shows that one cannot judge the method using
only one or two realizations to test it.
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Figure 1a. Realizations of Noisy Responses
for Eq. 2 with σ =0.05

Stochastic equations can be conveniently clas-
sified by

1 stochastic boundary conditions with de-
terministic properties

2 stochastic source terms with determinis-
tic properties

3 properties that are random variables
4 properties that are stochastic processes

Solutions to types 1 and 2 are basically de-
terministic in form and are discussed in detail
by Soong [9] and other than numerical concerns
pose no substantial problems. Types 3 and 4
are of interest here.
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Figure 1b. Estimates of C for σ =0.05
(the line represents the mean value of C)

Let the parameter C be either a) a constant
with respect to time and equal to C, or b) cor-
rupted by white noise and given by C + αw
where w represents a white noise process in
time. Testing parameter estimation methods
requires generating simulated realizations. For
a) this means computing many deterministic
solutions by Monte Carlo or using simpler tech-
niques based upon 1st or 2nd order approxima-
tions. The first is computationally expensive,
the second is limited in the noise that can be
considered [10, 11]. For b) there is really little
choice other than Monte Carlo simulations in
which random white noise processes are gener-
ated over the time period of interest and the
equations integrated over time. Most stochas-
tic equations are viewed from Ito’s point of
view and good descriptions of numerical meth-
ods are given by Gard [12] and Kloeden [13].

Figures 2a and 2b depict typical realiza-
tions of Θ(t) and estimates of C for α/C=0.05.
While the estimates of C using Eq. 3 are very
good, the computational expense of generating
the realizations is high.
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Probably more interesting is how the stan-
dard deviation of the response varies with time
as shown on Figure 2c. Whatever method we
are going to use to generate realizations more
efficiently than Monte Carlo must accurately
reproduce the exact time history.
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Figure 2a. Realizations of Responses
for Eq. 2 with C = 1 + αw with α =0.05
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Figure 2b. Estimates of C for α =0.05
(the line represents the mean value of C
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Figure 2c. Standard Deviation of Θ(t)
with C = 1 + αw with α =0.05

(solid line = exact, ragged = Monte Carlo

Let us first carefully differentiate between
the use of the terms random variables, random
fields, and stochastic processes in this paper.

Consider a probability space (Ω, A, P ) where
Ω represents all possible events, and A repre-
sents the events actually occurring. P repre-
sents a measure of the probability, i.e. P (A) is
the probability that A occurred. A stochastic
process, X(x, ω), is formally defined as a set of
random variables where x represents a dimen-
sion of the problem, i.e., time, space, or time
and space, and ω represents a specific realiza-
tion, i.e. an event. For a specific value of x,
say xi, X(xi, ω) represents a random variable
or random vector in the probability space. For
each fixed ω, say ωj , X(x, ωj) represents a real
valued function over the x dimension space.

We reserve the term ’random variable’ for
the case when C is constant with respect to t
in solving Eq. 2. If its mean and standard de-
viation vary with t in a fixed and deterministic
manner, it is termed a ’random field’. If, on
the other hand, C(t) is represented as C + σw
where w is white noise we term it as a ’stochas-
tic process’ which will be taken to be homoge-
neous, i.e., of constant standard deviation and
mean, over all t.

Methods of solving stochastic problems gener-
ally involve two steps:

1 representing a random field in terms of
uncorrelated random variables

2 converting all random variables into Gaus-
sian variables.

Inasmuch as lack of correlation does not im-
ply independence, the second step is necessary
for both practical and theoretical reasons since
uncorrelated Gaussian random variables are in-
dependent. The following sections on Polyno-
mial Chaos and Wick products describe meth-
ods for achieving the desired conversions.

Our goal is to represent the realizations in
the form

Θ(t) = Θ0 +
NΘ∑
i=1

Θi(C(ω))fi(t) (4)

where f1(t), f2(t) are relatively easy to evalu-
ate so that by choosing specific values of C(ω)
we can construct a realization Θ(t) without in-
tegrating Eq. 2.
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POLYNOMIAL CHAOS EXPANSIONS
FOR RANDOM VARIABLES

In Weiner’s study of the kinetic theory of
gases and other homogeneous structures, he
showed that a random variable, X(x, ω), with
any probability density distribution could be
represented as a nonlinear function of a stan-
dard Gaussian random variable ξ, i.e. one with
zero mean and unit standard deviation, by ex-
pressing it in the form

C =
∞∑

i=0

Cihi(ξ) (5a)

where hi(ξ) are Hermite polynomials given by

hi(ξ) = −(1)ieξ2/2 di

dξi
e−ξ2/2 (5b)

This representation is referred to as homo-
geneous chaos. The hi(ξ) are orthonormal with
respect to the weight function e−ξ2/2/

√
2π over

the range −∞ ≤ x < ∞ and the first several
are shown in Column 2 of Table 1.

Table 1
Chaos Polynomials

Order One Random Two Random
Variable Variables

i hi Ψ(ξ1, ξ2)
0th 1 1
1st ξ ξ1

ξ2

2nd ξ2 − 1 ξ2
1 − 1

ξ1ξ2

ξ2
2 − 1

Note that since h1(ξ) = ξ, the first two
terms of the series are the standard representa-
tion of a Gaussian random variable with C0 =
E(C) and C1 = σ(C). Expressing Θ(t) as

Θ(t) =
∞∑

i=0

Θihi(ξ) (6)

and substituting into Eq. 2, with C repre-
sented by Eq. 5a, multiplying by hj(ξ) and
integrating with respect to the weight function,
the coefficients Θi(t) satisfy

dΘi(t)
dt

= −
NC∑
k=0

NΘ∑
j=0

cijk

E(h2
k)

CjΘk(t) (7a)

where

E(h2
k(ξ) = k! (7b)

cijk =
1√
2π

∫ ∞

−∞
hi(ξ)hj(ξ)hk(ξ)e−ξ2/2dξ

(7c)
In Eq. 7a, we have truncated the series for C
and for Θ at NC and NΘ respectively.

The results of this representation of Θ(t)
in terms of the series expansion is the set of
coupled equations for Θ0, Θ1, ...ΘNΘ shown in
Table 2.

Table 2
Equations for Polynomial Chaos

Equations
dΘ0/dt = −Θ0 − αΘ1

dΘ1/dt = −Θ1 − αΘ0 − 2αΘ2

dΘ2/dt = −Θ2 − αΘ1 − 3αΘ3

dΘ3/dt = −Θ3 − αΘ2 − 4αΘ4

Figure 3 compares the exact solution with so-
lutions of Eq. 7a for NΘ = 1, 2, and 3.

Time
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

σ(
Θ

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

3rd Order

2nd Order

1st Order

Exact

Figure 3. Convergence of Eq. 6 to the
exact value for C being a random variable

Even for this relatively small number of terms,
the agreement is very acceptable. Unfortu-
nately, the simultaneous equations are coupled
as shown in Table 2.

One of the problems with treating C as a
random variable is the need to restrict the coef-
ficient of variation to ensure that the property
is reasonable. For example, for a Gaussian dis-
tribution this means limiting σ(C) such that
C − 3σ(C) > 0 to ensure its positivity. A com-
mon representation of C that ensures positivity
is C = exp(ξ), i.e. a log-normal distribution.
For α ≤ 0.5 it takes approximately 3 terms in
the expansion in terms of Hermite polynomials,
Eq. 5, for a reasonably accurate representation
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of C, leading to a minimum of 3 terms in the
expansion of Θ(t) and thus requiring the solu-
tion of 3 coupled equations for a single random
variable, ξ.

RANDOM FIELDS AND KARHUNEN-
LOEVE EXPANSION

When C(t) is a stochastic process, C(t) is
a random field, not a random variable. This is
handled by subdividing the space 0 ≤ t < T
into small increments, and assigning different
values of C(t) to each subdivision when in-
tegrating with respect to t. How to choose
the value of C appropriate to the increment
t to t + δt is an open question [14]. Common
choices are the midpoint value or some spatial
average over the increment. In general, mid-
point values tend to over predict the variabil-
ity in Θ(t) and spatial averaging under predicts
the variability. Regardless of the choice, the
numerical solution of Eq. 2 causes no concep-
tual difficulties, but it means that each solution
is unique and that drawing general conclusions
is not possible.

Suppose that the random field is homoge-
neous, i.e., its mean and standard deviation are
constant with respect to t, but that the proper-
ties are spatially correlated, E(C(ti), C(tj)) =
ΣC(Ci, Cj). Let V be a vector of C(t1)....C(tn)
that characterizes the random field. Then be-
cause the covariance matrix ΣC is symmetric
and positive definite, there is a transformation
from V to Ξ for which ΣΞ is diagonal, i.e., the
components of the new vector Ξ are uncorre-
lated. In the multi-variate statistical literature,
these new random variables are referred to as
principal components. In the transformation
V = UΞ, the matrix U is formed from the
eigenvectors of ΣC . Note that while uncorre-
lated, the new random variables are not inde-
pendent.

If instead of discrete values of C, a continu-
ous distribution is used, then the approach de-
scribed above leads to the Karhunen-Loeve ex-
pansion in terms of continuous eigenfunctions
(see Ghanem and Spanos [15] for details). Inas-
much as only a few such eigenfunctions are
known analytically, one generally resorts to nu-
merical evaluation, often using the finite ele-
ment approach, which is then the equivalent of
the discrete process described above.

If C is a Gaussian random field, then lack of
correlation implies independence. The result-
ing random field in terms of ξ is now composed
of as many independent vectors, whose compo-
nents are the values of C to be associated with
each increment of t, as there are increments in
t.

The Karhunen-Loeve (K-L) expansion of
white noise is given by

w(t) =
KL=∞∑

i=1

ξi

√
2
T

cos((2i − 1)πt)
2T

(8)

where ξi are standard Gaussian random vari-
ables. When using a finite number KL in the
series, just as for the eigenvectors described
above, the magnitudes of ξi must be adjusted
to yield the correct variance of the field. Tests
of solving Eq. 2 over the interval 0 ≤ t ≤ 2
have shown that five (5) values of ξi are suffi-
cient to adequately represent the time history
of σ(Θ(t)) shown in Figure 3c.

Our problem now has KL random variables,
not one, and the expansion of Eq. 6, must be
modified. Ghanem and Spanos [15] have ex-
tended Weiner’s concept of homogenous chaos
to represent multiple random variables in terms
of standard Gaussian random variables by ex-
panding in a series of generalized chaos poly-
nomials

dΘ(t) =
∞∑

i=0

Θi(t)Hi(ξ) (9)

where now

Hk(ξi1
1 , ξi2

2 , ...ξin
n ) = (−1)keξ2/2 dk

dξi1
1 ξi2

2

e−ξ2/2

(10a)
with

ξ2 = ξ2
1 + ξ2

2 + ...ξ2
n (10b)

and ij represents the number of times that ξj

appears in Hk and i1 + i2 + ...in = k. For any
given order of the chaos polynomial Hk(ξi1

1 , ξi2
2 ,

...ξin
n ), there are several unique polynomials,

e.g. for H2, we have H2(ξ1, ξ2), H2(ξ1, ξ3),
H2(ξ1, ξn) et seq. For each unique polynomial
there is an associated coefficient in the series,
Eq. 9. Following Ghanem and Spanos, we rep-
resent Eq. 9 in terms of these unique polyno-
mials as a truncated series
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Θ(t) =
P∑

i=0

Θi(t)Ψi(ξ) (11)

For two random variables ξ1 and ξ2, the ex-
pressions for Ψ0, Ψ1and Ψ2 are shown in col-
umn 3 of Table 1. Ghanem and Spanos termed
this extension of homogeneous chaos, polyno-
mial chaos, and the technique has been used
in solving multi-random variable problems in
structures, heteregeneous media, and ground
water analysis [16, 17].

The total number of terms, P , is

P =
(NΘ + Nξ)!

NΘ!Nξ!
(12)

Thus even though the expansion, Eq. 9, is lim-
ited to a relatively low order polynomial Ψk,
the number of coefficients of Θk that must be
evaluated increases at exceptional speed. For
example, using a 3rd order polynomial with 2
random variables leads to solving 10 coupled
equations for each value of Θ.

For the case where C is represented by white
noise, Eq. 2 was solved in two ways. First, the
range of t was subdivided into Nξ equally sized
intervals and assuming that ξi in each interval
was an independent Gaussian random variable.
Expanding Θ(t) using 1st order Hermite poly-
nomials,

Θ(t) = Θ0 +
Nξ∑
i=1

Θih1(ξi) (13)

with Nξ = 40 gives the results shown in Fig-
ure 5. The solution of the coupled equations
was obtained using a 4th order Runge Kutta
method over each of the equally sized intervals
Nt. In this approach good results required that
integration interval, ∆t matched the random
variable interval, Nξ = Nt. Use of fewer values
of ξi led to unacceptable results. If the K-L ex-
pansion was used, good results were obtained
with a reduced number of terms as shown. In
the first approach we have 41 coupled equa-
tions to solve, in the second, KL + 1. The
results based upon the one term expansion,
NΘ = 1, i.e. a Gaussian expansion, are in good
agreement with the exact solution and there is
no need to employ higher order hermite poly-
nomials in the expansion for Θ(t). However,
for C(t) given by other than Gaussian white
noise, higher order expansions will generally be
needed.
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  and Nt = NΘ = 40

Figure 5. Illustrating the Convergence of the
K-L Approach to solving Eq. 2 for white noise

STOCHASTIC WHITE NOISE PRO-
CESSES AND WICK PRODUCTS

When the correlation length is large, then
only a few vectors must be considered, but if
it is small, then many must be and in the limit
as the field approaches white noise as many
vectors as there are increments in t must be
considered as described above. If the prop-
erties constitute a random field, that is their
statistics are known, then solving by using the
expansion in terms of Ξ is unrealistically ex-
pensive and one is limited to solutions that are
unique to the specific random field considered.

However if C(t) is a mean value C modified
by white noise, a different approach has been
described by Holden et al. [18]. This approach
is based upon the Wick product. Consider two
stochastic processes, F and G, and let each be
represented by an expansion in chaos polyno-
mials

F =
∑

fiHi G =
∑

gjHj (14a)

then the Wick product is defined as
F � G =

∑
figiHi+j (14b)

Wick products have several valuable features.
They are associative, distributive, and commu-
tative. They can be differentiated and inte-
grated according to the usual rules of calculus.
Probably most important are the relations

E(F � G) = E(F )E(G) ifF �= G(15a)
F �k = F � F �(k−1) with F �0 = 1 (15b)

E(e�X) = eE(X) (15c)

if P (F ) =
N∑

n=0

anF,

P �(F ) =
N∑

n=0

anF �n (15d)
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Following Holden, one simply writes the origi-
nal equation as

dΘ(t)
dt

= −C(ω) � Θ(t) (16)

and integrates as though it were an ordinary
differential equation to obtain

Θ(t) = e�−C(ω)t (17)

Using Eq. 23c, we find the expected value of
Θ(t)

E(Θ(t)) = e−E(k)t = e−Ct (18a)

To find the standard deviation of Θ(t) we can-
not use Eq. 15a since F = Θ and G = Θ.
Instead, we can show that

E(Θ2) = eα2tE(Θ � Θ) (18b)
and thus

σ2(Θ) = e−2Ct
(
eα2t − 1

)
(18c)

in agreement with the exact solution. Note
the term α2t. If the equation is not non-
dimensionalized, the units of this product are
clearly inconsistent. For a Brownian process,
B(t), σ2(B) = t and it is for this reason, that
one must be careful to use Eq. 2, not Eq. 1.

When an analytical relationship between
E(Θ �Θ) and E(Θ2) is not available, then one
must expand the solution and the noise in se-
ries, Eq. 14a, and project the solution onto the
space, similar to the method used for polyno-
mial chaos. An important point is that the
expected value of the solution is simply the
first term in the series which corresponds to
the deterministic solution based upon average
values of the parameters. The equations for
the other coefficients in the series are coupled
to the first and to the preceding terms, but
not to subsequent terms. Thus the solution
can be obtained in a straightforward recursive
way. Figure 6 illustrates the solution to Eq. 2.

One must also realize that the use of Wick
products is not without questions. Kesse [19]
points out the expected value is independent of
the statistics of the process, contrary to some
Monte Carlo simulation results. Benth and
Theting [20] note that the validity of the Wick
product needs to be confirmed mathematically
and physically for each application.
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Figure 6. Convergence of the Wick solution
of Eq. 2 for white noise

Following Holden, one can easily compute
different realizations and obtain estimates of
the relevant statistics by noting that Eq. 17
can be written for C = 1 to first order (i.e.
Gaussian) as (see Exercise 2-15 of Holden)

Θ(t) = e−t(1 + αB(t) (19)

where B(t) is a Brownian process whose in-
crements are Gaussian white noise. One sim-
ply creates a NxMC array of standard random
variables and substitutes into Eq. 19 to create
MC realizations.

Unfortunately one cannot always find the
analytical relationship between E(Θ � Θ) and
E(Θ2) comparable to Eqs. 18a and 19. In-
stead we use the series expansion and judge
the results by comparison to the Monte Carlo
solution. As seen in Figure 6, the agreement is
acceptable.

CONCLUSIONS

Both the polynomial chaos and the Wick
product approach yield equations of the form of
Eq. 4 that we desired. Once Θi are computed,
then one simply samples values of the indepen-
dent random variables, ξi, and evaluates the
realization, Θ(t) without the need to re-solve
Eq. 2. In essence one has reduced the NtxMC
problem to a MC sized problem, thus achiev-
ing substantial reductions in computing time.
The reason for preferring the Wick approach
is that the equation for Θ0 is uncoupled from
Θi as contrasted to the polynomial chaos set of
equations. Theting has used the Wick method
to generate realizations for flow through porous
media. Of particular note is the simplification
when positivity of C is achieved, for example
by using C(t) = exp(w). A correlation of C(t)
to better represent reality can be introduced
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by using a smoothed white noise, wφ, as de-
scribed by Holden who gives a simple relation-
ship between exp � wφ and exp � w that en-
ables a straightforward solution to Eq. 2 using
the Wick calculus. The polynomial chaos ap-
proach requires several terms in the expansion,
Eq. 6, to represent C(t), increasing the num-
ber of coupled equations to be solved, which
that for Θ0, the mean response, is dependent
upon the remaining equations, leading to high
computing expense.
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